
Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

From UML Profiles to EMF Profiles
and Beyond?

Philip Langer1, Konrad Wieland2, Manuel Wimmer2, and Jordi Cabot3

1 Johannes Kepler University Linz, Austria
philip.langer@jku.at

2 Vienna University of Technology, Austria
{wieland|wimmer}@big.tuwien.ac.at

3 INRIA & Ecole des Mines de Nantes, France
jordi.cabot@inria.fr

Abstract. Domain-Specific Modeling Languages (DSMLs) are getting
more and more attention as a key element of Model Driven Engineering.
As any other software artefact, DSMLs should continuously evolve to
adapt to the changing needs of the domain they represent. Unfortunately,
right now evolution of DSMLs is a costly process that requires changing
its metamodel and re-creating the complete modeling environment.

In this paper we advocate for the use of EMF Profiles, an adaptation of
the UML profile concept to DSMLs. Profiles have been a key enabler for
the success of UML by providing a lightweight language-inherent exten-
sion mechanism which is expressive enough to cover an important subset
of adaptation scenarios. We believe a similar concept for DSMLs would
provide an easier extension mechanism which has been so far neglected
by current metamodeling tools. Apart from direct metamodel profiles,
we also propose reusable profile definition mechanisms whereby profiles
are defined independently of any DSML and, later on, coupled with all
DSMLs that can benefit from these profiles. Our approach has been im-
plemented in a prototype integrated in the EMF environment.

Keywords: language extensions, UML profiles, language engineering

1 Introduction

Domain-Specific Modeling Languages (DSMLs) have gained much attention in
the last decade [7]. They considerably helped to raise the level of abstraction in
software development by providing designers with modeling languages tailored
to their application domain. However, as any other software artifact, DSMLs are
continuously subjected to evolution in order to be adapted to the changing needs
of the domain they represent. Currently, evolving DSMLs is a time-consuming
and tedious task because not only its abstract and concrete syntax but also

? This work has been partly funded by the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) and FFG under grant FIT-IT-819584.

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

all related artifacts as well as all DSML-specific components of the modeling
environment have to be re-created or adapted.

UML has avoided these problems by promoting the use of profiles. Indeed,
the profile mechanism has been a key enabler for the success and widespread
use of UML by providing a lightweight, language-inherent extension mecha-
nism [?]. Many UML tools allow the specification and usage of user-defined
profiles and are often shipped with various pre-defined UML Profiles. Induced
by their widespread adoption, several UML Profiles have even been standardized
by the OMG1.

In the last decade, many debates2 on pros and cons of creating new modeling
languages either by defining metamodels from scratch (with the additional bur-
dens of creating a specific modeling environment and handling their evolution)
or by extending the UML metamodel with UML Profiles (which provide only a
limited language adaptation mechanism) have been going on.

However, in this paper we propose a different solution to combine the best
of both breeds. We advocate for adapting the UML Profiles concept as an an-
notation mechanism for existing DSMLs. We believe the usage of profiles in the
realm of DSMLs brings several benefits:

(1) Lightweight language extension. One of the major advantages of UML Pro-
files is the ability to systematically introduce further language elements without
having to re-create the whole modeling environment such as editors, transfor-
mations, and model APIs.

(2) Dynamic model extension. In contrast to direct metamodel extensions, also
already existing models may be dynamically extended by additional profile in-
formation without recreating the extended model elements. One model element
may further be annotated with several stereotypes (even contained in different
profiles) at the same time which is equivalent to the model element having mul-
tiple types [2]. Furthermore, the additional information introduced by the profile
application is kept separated from the model and, therefore, does not pollute the
actual model instances.

(3) Preventing metamodel pollution. Information not coming from the modeling
domain, can be represented by additional profiles without polluting the actual
domain metamodels. Consider for instance annotating the results of a model
review (as known from code reviewing) which shall be attached to the reviewed
domain models. Metaclasses concerning model reviews do not particularly relate
to the domain and, therefore, should not be introduced in the domain meta-
models. Using specific profiles instead helps to separate such concerns from the
domain metamodel and keeps the metamodel concise and consequently, the lan-
guage complexity small.

(4) Model-based representation. Additional information, introduced to the mod-
els by profile applications, is accessible and processable like ordinary model in-
formation. Consequently, model engineers may reuse familiar model engineering

1 http://www.omg.org/technology/documents/profile_catalog.htm
2 Consider for instance the panel discussion “A DSL or UML Profile. Which would you

use?” at MoDELS’05 (http://www.cs.colostate.edu/models05/panels.html)

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

technologies to process profile applications. Due to their model-based represen-
tation, profile applications may also be validated against the profile definition
to ensure their consistency as it is known from metamodel/model conformance.

Until now, the notion of profiles has not been adopted in current meta-
modeling tools. Thus, the contribution of this paper is to adapt the notion of
UML profiles to arbitrary modeling languages residing in the Eclipse Modeling
Framework3 (EMF) which is currently one of the most popular metamodeling
frameworks. Thanks to this, existing modeling languages may easily be extended
by profiles in the same way as it is known from UML tools. Besides this, we pro-
pose two novel techniques to enable the systematic reuse of profile definitions
across different modeling languages. First, we introduce generic profiles which
are created independently of the modeling language in the first place and may
be bound later to several modeling languages. Second, we propose meta profiles
for immediately reusing them for all modeling languages. Finally, we present how
our prototype called EMF Profiles is integrated in EMF.

2 From UML Profiles to EMF Profiles

In this section, we present the standard profile mechanism (as known from UML)
for EMF. Firstly, we disclose our design principles. Secondly, we discuss how
the profile mechanism may be integrated in EMF in a way that profiles can
seamlessly be used within EMF following the previous design principles. Finally,
we show how profiles as well as their applications are represented based on an
example.

2.1 Design Principles

With EMF Profiles we aim at realizing the following five design principles. Firstly,
annotating a model should be as lightweight as possible, hence, no adaptation of
existing metamodels should be required. Secondly, we aim at avoiding to pollute
existing metamodels with concerns not directly related to the modeling domain.
Thirdly, we aim at separating annotations from the base model to allow importing
only those annotations which are of current interest for a particular modeler
in a particular situation. Fourthly, the annotations shall be conforming to a
formal and well-known specification such as it is known from metamodel/model
conformance. Finally, users should be enabled to intuitively attach annotations
using environments and editors they are familiar with. Consequently, annotations
shall be created either on top of the concrete (graphical) syntax of a model or
on top of the abstract syntax using e.g., generic tree-based editors.

2.2 Integrating Profiles in the EMF Metalevel Architecture

The profile concept is foreseen as an integral part of the UML specification.
Therefore, the UML package Profiles, which constitutes the language for

3 http://www.eclipse.org/modeling/emf

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11
M

3

UML
Core Profiles

«import»

M
2 UML aProfile

«instanceOf» «instanceOf»

«instanceOf» «instanceOf»

«extend»

M
1 aUML

Model
aProfile

Application
«extend»

Fig. 1: UML Architecture

specifying UML Profiles, resides, in terms
of the metamodeling stack [9], at the meta-
metalevel M3 [13] as depicted in Fig. 1. A
specific profile (aProfile), as an instance of
the meta-metapackage Profile, is located at
the metalevel M2 and, therefore, resides on
the same level as the UML metamodel itself.
Thus, modelers may create profile applica-
tions (aProfileApplication on M1) by instan-
tiating aProfile just like any other concept in
the UML metamodel.

To embed the profile mechanism into
EMF, a language (equivalent to the package
Profiles in Fig. 1) for specifying profiles is needed as a first ingredient. This is
easily achieved by creating an Ecore-based metamodel which is referred to as
Profile MM (cf. column Profile Definition in Fig. 2). Specific profiles, containing
stereotypes and tagged values, may now be modeled by creating instances, re-
ferred to as aProfile, of this profile metamodel. Once a specific profile is at hand,
users should now be enabled to apply this profile to arbitrary models by creat-
ing stereotype applications containing concrete values for tagged values defined
in the stereotypes. As already mentioned, in UML, a stereotype application is
an instance—residing on M1—of a stereotype specification in M2 (cf. Fig. 1).

Unfortunately, in contrast to the UML architecture, in EMF no profile sup-
port exists in M3. The level M3 in EMF is constituted only by the metamodeling
language Ecore (an implementation of MOF [12]) which has no foreseen profile
support. Extending Ecore on level M3 to achieve the same instantiation capabil-
ities for profiles as in UML is not a desirable option, because this would demand
for an extensive intervention with the current implementation of the standard
EMF framework. Therefore, in EMF, our profile metamodel (ProfileMM in col-
umn Profile Definition of Fig. 2) is defined at level M2 and the user-defined
profiles (aProfile) reside on M1. As an unfortunate result, a defined stereotype
in aProfile cannot be instantiated for representing stereotype applications (as in
UML), because aProfile is already located on M1 and EMF does not allow for
instantiating an instance of a metamodel, i.e., EMF does not directly support
multilevel modeling [1].

Therefore, more sophisticated techniques have to be found for representing
stereotype applications in EMF. In particular, we identified two strategies for
lifting aProfile from M1 to M2 in order to make it instantiable and directly
applicable to EMF models.

(1) Metalevel Lifting By Transformation. The first strategy is to apply
a model-to-model transformation which generates a metamodel on M2, corre-
sponding to the specified profile on M1. The generated metamodel, denoted as
aProfile as MM in the first column of Fig. 2, is established by implementing
a mapping from Profile concepts to Ecore concepts. In particular, the trans-
formation generates for each Stereotype a corresponding EClass and for each

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

() M t l l Lifti (b) M t l l Lifti

M
3

(a) Metalevel Lifting
by Transformation Profile Definition (b) Metalevel Lifting

by Inheritance

Ecore
«instanceOf»

«instanceOf»

M
2 aProfile as MM

«instanceOf»

Profile MM
«transformedTo»

«instanceOf»

«inheritsFrom»
M

1

aProfile aProfile
Application

aProfile
Application

«instanceOf»

Fig. 2: EMF Profile Architecture Strategies

TaggedValue a corresponding EStructuralFeature. The resulting metamodel
is a direct instance of Ecore residing on M2 and therefore, it can be instantiated
to represent profile applications.
(2) Metalevel Lifting By Inheritance. The second strategy allows to directly
instantiate profiles by inheriting instantiation capabilities (cf. �inheritsFrom� in
the right column of Fig. 2). In EMF, only instances of the meta-metaclass EClass
residing on M3 (e.g., the metaclass Stereotype) are instantiable to obtain an
object on M1 (e.g., a specific stereotype). Consequently, to allow for the di-
rect instantiation of a defined stereotype on M1, we specified the metaclass
Stereotype in Profile MM to be a subclass of the meta-metaclass EClass. By
this, a stereotype inherits EMF’s capability to be instantiated and thus, a stereo-
type application may be represented by a direct instance of a specific stereotype.

We decided to apply the second strategy, because of the advantage of using only
one artifact for both, (1) defining the profile and (2) for its instantiation. This is
possible because by this strategy, a profile is now a dual-faceted entity regard-
ing the metalevels which is especially obvious when considering the horizontal
�instanceOf � relationship between aProfile and aProfileApplication (cf. Fig. 2).
On the one hand, a profile is located on M1 when considering it as an instance of
the profile metamodel (ProfileMM on M2)). On the other hand, the stereotypes
contained in the profile are indirect instances of EClass and are therefore instan-
tiable which means that a profile may also be situated on M2. Especially, when
taking the latter view-point, the horizontal �instanceOf � relationship between
profile and profile application shown in Fig. 2 will become the expected vertical
relationship as in the UML metalevel architecture.

2.3 The EMF Profile Metamodel

The metamodel of the profile definition language is illustrated in package Stan-
dard EMF Profile of Fig. 3. As a positive side effect of choosing the met-
alevel lifting strategy 2, the class Stereotype may contain, as an EClass, also

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

Profile

iconPath : EString
Stereotype

Profile

Ecore

abstract: EBoolean
eSuperTypes : EClass
…

EClass
nsURI : EString
eClassifiers : EClassifier
…

EPackage

base

1

base

0..*

Standard EMF Profile

Generic Profile Meta Profile

isMeta : EBoolean
Stereotype

EClass

GenericType

<<merge>> <<merge>>

Complete EMF Profile <<merge>><<merge>>

expr : OCLExpression
Condition

0..*
isMeta : EBoolean

Profile

ProfileApplication

ProfileApplication

0..*

appliedTo : EObject
StereotypeApplication

Fig. 3: EMF Profile Metamodel

EAttributes and EReferences which are reused to represent tagged values.
Thus, no dedicated metaclasses have to be introduced to represent the concept
of tagged values. Please note that stereotype applications also require to have
a reference to the model elements to which they are applied. Therefore, we in-
troduced an additional metamodel package, namely ProfileApplication in Fig. 3.
This metamodel package contains a class StereotypeApplication with a ref-
erence to arbitrary EObjects named appliedTo. Whenever, a profile (instance
of the Profile package) is saved, we automatically add StereotypeApplication

as a superclass to each specified stereotype. To recall, this is possible because
each Stereotype is an EClass which may have superclasses. Being a subclass
of StereotypeApplication, stereotypes inherit the reference appliedTo auto-
matically. In the following subsection, we further elaborate on the EMF Profile
metamodel by providing a concrete example. Please note that the so far un-
mentioned packages Generic Profile and Meta Profile in Fig. 3 are discussed in
Section 3.

2.4 Applying the EMF Profile Metamodel

To clarify how profiles and profile applications are represented from a techni-
cal point of view, we make use of a small example. In particular, a simplified
version of the well-known EJB profile is applied to an Entity-Relationship (ER)
model [4]. Fig. 4(a) depicts an excerpt of the ER metamodel and the EJB profile.
The EJB profile contains the stereotypes SessionBean and EntityBean, which
both extend the metaclass Entity of the ER metamodel. Besides, the profile

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11
EJBProfileApplication

<<stereotype>>
EntityBean

isUserManaged : Boolean

<<metaclass>>>
ER::Entity

<<stereotype>>
IDAttribute

<<metaclass>>
ER::Attribute

<<stereotype>>
SessionBean

isStateful : Boolean

<<profile>> EJB

: ProfileApplication

: EntityBean
isUserManaged : true

appliedTo
1 : Entity

appliedTo

: SessionBean
isStateful : true

: IDAttribute

2 : Attribute

appliedTo

: IDAttribute

appliedTo

BaseModel

(a)

(c)

ER

<<import>>

(b)

ProfileApplication
0..* appliedTo : EObject

StereotypeApplication
stereotypeApplications

<<stereotype>>
EntityBean

<<stereotype>>
IDAttribute

<<stereotype>>
SessionBean

<<profile>> EJB

StereotypeApplication

<<merge>>

Entity Attribute0..*

ProfileApplication

<<instanceOf>>

<<instanceOf>>

name : Affiliationname : Person

name : String name : String

3 : Attribute
name : RegNo

4 : Entity
name :
PersonSearchService

5 : Attribute
name : URI

appliedTo

Fig. 4: EMF Profiles by Example: (a) Profile definition user-view, (b) Internal
profile representation, (c) Profile application

introduces the stereotype IDAttribute extending the metaclass Attribute to
indicate the ID of an Entity.

As already mentioned in the previous subsection, internally, we use the Pro-
fileApplication metamodel (cf. Fig. 4(b)) to weave the necessary concepts for
a profile’s application into a profile model. In particular, the class Profile-

Application acts as root element for all StereotypeApplications in a profile
application model. Furthermore, all Stereotypes inherit the reference appliedTo
from StereotypeApplication. When instantiating (i.e., applying) the EJB pro-
file, a root element of the type ProfileApplication is created which may con-
tain stereotype applications as depicted in Fig. 4(c). For determining the appli-
cability of a stereotype s to a particular model element m, it is checked whether
the model element’s metaclass (m.eClass()) is included in the list of metaclasses
that are extended by the stereotype (s.getBase()). If so, the stereotype s is
applicable to model element m. Each stereotype application is represented as
a direct instance of the respective stereotype (e.g., �EntityBean�) and refers

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

to the model element in the BaseModel to which it is applied by the reference
appliedTo (inherited from the class StereotypeApplication). Please note that
the EJB profile application resides in a separated model file and not in the orig-
inal ER model denoted with BaseModel in Fig. 4.

3 Going Beyond UML Profiles

Originally, the profile mechanism has been specifically developed for UML. Hence,
profiles may only extend the UML metamodel. In the previous section, we showed
how this lightweight extension mechanism is ported to the realm of DSMLs.
However, in this realm a whole pantheon of different DSMLs exists which are
often concurrently employed in a single project. As a result, the need arises to
reuse existing profiles and apply them to several DSMLs. Thus, we introduce
two dedicated reuse mechanisms for two different scenarios:

(1) Metamodel-aware Profile Reuse. The first use case scenario is when
users aim to apply a profile to a specific set of DSMLs. Being aware of these
specific DSMLs’ metamodels, the user wants to take control of the applicability
of stereotypes to a manually selected set of metaclasses.

(2) Metamodel-agnostic Profile Reuse. In the second use case scenario,
users intend to use a profile for all DSMLs without the need for further con-
straining the applicability of stereotypes. Therefore, a stereotype shall—agnostic
of the DSMLs’ metamodels—be applicable to every existing model element.

To tackle scenario (1), we introduce generic profiles allowing to specify stereo-
types that extend so-called generic types. These generic types are independent of
a concrete metamodel and may be bound to specific metaclasses in order to reuse
the generic profile for several metamodels. For tackling scenario (2), we propose
meta profiles which may immediately be applied to all DSMLs implemented by
an Ecore-based metamodels.

3.1 Generic Profiles

The goal behind generic profiles is to reuse a profile specification for several
“user-selected” DSMLs. Therefore, a profile should not dependent on a specific
metamodel. Inspired by the concepts of generic programming [10], we use the no-
tion of so-called generic types instead. In particular, stereotypes within a generic
profile do not extend concrete metaclasses as presented in the previous section,
they extend generic types instead. These generic types act as placeholders for
concrete metaclasses in the future. Once, a user decides to use a generic profile
for a specific DSML, a binding is created which connects generic types to cor-
responding concrete metaclasses contained in the DSML’s metamodel. For one
generic profile there might exist an arbitrary number of such bindings. Conse-
quently, this allows to reuse one generic profile for several DSMLs at the same
time. Furthermore, it enables users to first focus on the development of the
profile and reason about the relationship to arbitrary DSMLs in a second step.

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

name : EString

T Container

<<stereotype>>
EntityBean

isUserManaged : EBoolean

<<stereotype>>
IDAttribute

<<stereotype>>
SessionBean

isStateful : EBoolean

T Property

<<metaclass>>
EClass

<<metaclass>>
EAttribute

Generic Profiles Example

self.eAttributes
->exists(a|

a.name="name" and
a.eType =
EString)

<<profile>> EJB
Container, Property

eAttributes

Ecore

«bind» <Container->EClass, Property->EAttribute>

name : EString

<<generictype>>
Container

<<stereotype>>
EntityBean

isUserManaged : EBoolean

<<stereotype>>
IDAttribute

<<stereotype>>
SessionBean

isStateful : EBoolean

<<generictype>>
Property

<<profile>> EJB
Container, Property

ER

«bind» <Container->Entity, Property->Attribute>

self.eAttributes
->exists(a|

a.name="name")

Entity Attribute0..*

name : String name : String

Fig. 5: Generic EJB Profile and its Binding to the ER metamodel

As example, consider the same EJB profile which has been specified in terms
of a concrete profile in Section 2. Now, we aim at specifying the same profile
in a generic way to enable its use also for other DSMLs. In particular, we show
how the EJB profile may first be specified generically and we subsequently illus-
trate the binding of this generic profile again for ER models. We get the same
modeling expressiveness as before but now in a way that allows us to reuse the
EJB profile when using other data modeling languages. The original EJB pro-
file for ER extends two metaclasses, namely the stereotypes SessionBean and
EntityBean extend the metaclass Entity and the stereotype IDAttribute ex-
tends Attributes (cf. Fig. 4). To turn this concrete profile into a generic one, we
now use two generic types, named Container and Property in Fig. 5, instead
of the two concrete types Entity and Attribute.

Before we describe how generic profiles may be bound to concrete DSMLs, we
first discuss conditions constraining such a binding. When developing a concrete
profile, the extended DSML is known and consequently only suitable metaclasses
are selected to be extended by the respective stereotypes. For instance, in the
concrete EJB profile for ER, Entities can be annotated with the stereotype
EntityBean. For marking the Entity’s ID attribute, the EJB profile introduces
the stereotype IDAttribute which extends Attributes. This is reasonable, be-
cause we are aware of the fact that Entities contain Attributes in the ER
metamodel, otherwise it obviously would not make any sense to extend the meta-
class Attribute in this matter. However, generic profiles are developed without
a concrete DSML in mind. Hence, profile designers possibly need to specify con-
ditions enforcing certain characteristics to be fulfilled by the (up to this time)
unknown metaclasses to which a generic type might be bound in future.

Therefore, EMF Profiles allows to attach conditions to generic profiles. Such
conditions are specified by simply adding references or attributes to generic
types. This is possible because, as a subclass of EClass, generic types may con-
tain EReferences and EAttributes. By adding such a reference or attribute
in a generic type, a profile designer states that there must be a corresponding
reference or attribute in the metaclass which is bound to the generic type. Inter-
nally, these references and attributes are translated to OCL constraints which

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

are evaluated in the context of the metaclass a user intends to bind. Furthermore,
the profile designer must specify which meta-features, such as the cardinality of
the reference or attribute in a generic type, shall be enforced. In our example in
Fig. 5, the profile designer specified a reference from the generic type Container
to Property as well as an attribute name in Property. To enforce this, the OCL
constraints in Listing 1.1 are generated. These constraints must be satisfied by
each metamodel on which we want to apply this profile on.

Listing 1.1: OCL Constraints generated for Container and Property.

1 context Container inv :
2 s e l f . eReferences−>e x i s t s (r | r . eType = Property)}
3 context Property inv :
4 s e l f . eAtt r ibutes−>e x i s t s (a | a . name = ”name” and a . eType = EString)

Once the stereotypes and generic types are created, the profile is ready to be
bound to concrete DSMLs. This is simply achieved by selecting suitable meta-
classes of a DSML for each generic type. In our example depicted in Fig. 5, the
generic types Container and Property are bound to the metaclasses in the ER
metamodel Entity and Attribute, respectively, in order to allow the applica-
tion of the generic EJB profile to ER models. When the binding is established, it
can be persisted in two different ways. The first option is to generate a concrete
profile out of the generic profile for a specific binding. This concrete profile may
then be applied like a normal EMF profile as discussed in Section 2. Although
this seem to be the most straightforward approach, the explicit trace between
the original generic profile and the generated concrete profile is lost. Therefore,
the second option is to persist the binding directly in the generic profile defini-
tion. Whenever a user intends to apply a generic profile to a concrete DSML, the
EMF Profile framework searches for a persisted binding for the concrete DSML’s
metaclasses within the profile definition. If a binding exists, the user may start
to apply the profile using this persisted binding. Otherwise, the user is requested
to specify a new binding.

To support generic profiles, we extended the EMF Profile metamodel by
the class GenericType (cf. Fig 3). Generic types inherit from EClass and may
contain Conditions representing more complex constraints going beyond the
aforementioned enforced references and attributes for bound metaclasses.

3.2 Meta Profiles

With meta profiles we tackle a second use case for reusing profiles for more than
one DSML. Instead of supporting only a manually selected number of DSMLs,
with meta profiles we aim at reusing a profile for all DSMLs without the need
of defining an explicit extension for each DSML. This is particularly practical
for profiles enabling general annotations which are suitable for every DSML. In
other words, stereotypes within a meta profile must be agnostic of a specific
metamodel and shall be applicable to every model element irrespectively of its
metaclass (i.e., its type).

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

Metaprofile Example

t fil M d lR i

<<meta-stereotype>>
ReviewDecision

reviewer: EStringfil
e

<<meta-profile>> ModelReview

<<meta-metaclass>>
EClass

g
reviewDate. EDate

M
et

ap
ro

f

<<meta-stereotype>>
D li d

<<meta-stereotype>>
A d

<<meta-stereotype>>
R k Declined

reason: EString
Approved Rework

assignedTo: EString
reason: EString

Application to a simplified Event-driven Process Chain Model

: Approved
reviewer : "Homer"

: Rework
reviewer : "Homer"

reviewDate : 23/06 assignedTo: "Bart"
reason : "Change to XOR"

appliedTo
appliedTo

BaseModel

: Event
name : "order received"

: Function
name : "check order"

: LogicalConnector
type : OR

Application to a simplified Use Case Diagram

: Approved
reviewer : "Homer"

: Declined
reviewer : "Homer"reviewer : Homer

reviewDate : 23/06
reviewer : Homer
reason : "Dough! Every order gets canceled?"

appliedTo appliedTo

BaseModel

: UseCase
name : "Order Goods"

: Include : UseCase
name : "Cancel Order"

Fig. 6: Meta profile Example: The Model Review Profile

In EMF, every model element is an instance of a metaclass. Each metaclass
is again an instance of Ecore’s EClass. Therefore, meta-stereotypes in a meta
profile do not extend metaclasses directly. Instead, they are configured to be
applicable to all instances of instances of EClass and, consequently, to every
model element (as an instance of an instance of EClass). This approach is in-
spired by the concept of potency known from multilevel metamodeling [1]. Using
the notion of potency, one may control on which metamodeling level a model
element may be instantiated. By default, the potency is 1 which indicates that
a model element may be instantiated in the next lower metamodeling level. By
a potency p ≥ 1 on a metamodeling level n, a model element may also be con-
figured to be instantiable on the level n − p instead of the next lower level. In
terms of this notion of potency, a meta-stereotype has a potency of p = 2.

Meta profiles are created just like normal profiles. However, a new attribute,
namely isMeta, is introduced to the profile metamodel for indicating whether a
stereotype is a meta-stereotype (cf. Fig. 3). The Boolean value of this attribute
is regarded by EMF Profiles when evaluating the applicability of stereotypes. In
particular, if isMeta is true, a stereotype is always considered to be applicable
to every model element, irrespectively of its metaclass.

Our example for presenting metaprofiles is a model review profile (cf. Fig. 6).
The goal of this profile is to allow for annotating the results of a systematic

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

examination of a model. Since every model irrespectively of its metamodel can
be subject to a review, this profile is suitable for every DSML. For simplicity, we
just introduce three stereotypes in the review profile, namely Approved, Rework,
and Declined, which shall be applicable to every kind of element in every DSML.
Therefore, these three stereotypes extend the class EClass and are marked as
meta-stereotypes (indicated by �meta-stereotype� in Fig. 6). By this, the ap-
plicability of these stereotypes is checked by comparing the meta-metatypes of
model elements with the metaclasses extended by the stereotypes. As a result,
the metaprofile in our example is applicable to every element in every DSML.

In the example shown in Fig. 6, we depicted the Object Diagram of two sep-
arate applications of the same metaprofile to two models conforming to different
metamodels. In the first Object Diagram, an Event and one LogicalConnector

within an Event-driven Process Chain (EPC) model have been annotated with
the meta-stereotype �Approve� and �Rework�, respectively. This is possible
because both instances in the EPC model are an instance of a metaclass which
is again an instance of EClass. The same metaprofile can also be applied to any
other modeling language. Of course, also UML itself is supported by EMF Pro-
files. Therefore, the model review profile may also be applied to, for example, a
UML Use Case Diagram (cf. Fig. 6). In this figure, the stereotype �Approve� has
been assigned to the UseCase named “Order Goods” and the stereotype �De-
clined� is applied to the Includes relationship.

3.3 Summary

Both techniques for enabling the reuse of profiles for several DSMLs have their
advantages and disadvantages depending on the intended use case. Meta pro-
files are immediately applicable to all DSMLs without further user intervention.
However, with meta profiles no means for restricting the use of such profiles for
concrete DSMLs exist. If this is required, generic profiles are the better choice.
When specifying generic profiles, explicit conditions may be used to control a
profile’s usage for concrete DSMLs. On the downside, this can only be done
with additional efforts for specifying such conditions in the generic profile and
creating manual bindings from generic profiles to concrete DSMLs.

4 A Tour on EMF Profiles

In this section, we present our prototypical implementation of EMF Profiles which
is realized as Eclipse plug-in on top of the Eclipse Modeling Framework and
Graphical Modeling Framework4 (GMF). Please note that we refrained from
modifying any artifact residing in EMF or GMF. EMF Profiles only uses well-
defined extension points provided by these frameworks for realizing profile sup-
port within the EMF ecosystem. For a screencast of EMF Profiles, we kindly
refer to our project homepage5.

4 http://www.eclipse.org/gmf
5 http://www.modelversioning.org/emf-profiles

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

Fig. 7: EJB Profile Defined with Graphical EMF Profiles Editor

Fig. 8: Screenshot of Applied EJB Profile to an Ecore Diagram

Profile Definition. To define a profile, modelers may apply either the tree
editor automatically generated from the Profile Metamodel or our graphical
EMF Profiles Editor which is realized with GMF (cf. Fig. 7 for a screenshot). The
graphical notation used in this editor takes its cue from the UML Profiles syntax.
With these editors, modelers may easily create stereotypes containing tagged
values and set up inheritance relationships between stereotypes and extension
relationships to metaclasses of arbitrary DSML’s metamodels. Metaclasses may
be imported by a custom popup menu entries when right-clicking the canvas of
the editor and are visualized using the graphical notation from Ecore.

Profile Application. Defined profiles may also be applied using any EMF-
generated tree-based editor or any GMF-based diagramm editor. The screenshot
depicted in Fig. 8, shows the afore presented EJB profile applied to an example
Ecore diagram. To apply profiles, our plugin contributes a popup menu entry
(cf. Fig. 8 (1)) which appears whenever a model element is right-clicked. By this
menu, users may apply defined profiles (i.e., creating new profile application) or
import already existing profile applications. Once a profile application is created

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

or imported, stereotypes may be applied using the same popup menu. When a
stereotype is applied, the defined stereotype icon is attached to the model el-
ement (cf. Fig. 8 (2)). For this purpose we used the GMF Decoration Service,
which allows to annotate any existing shapes by adding an image at a pre-defined
location. Furthermore, we created a Profile Applications view, which shows all ap-
plied stereotypes of the currently selected model element (cf. Fig. 8 (3)). The
currently selected model element is retrieved using the ISelectionProvider in-
terface which is implemented by every EMF or GMF-based editor. For assigning
the tagged values of an applied stereotype, we leverage the PropertyView (cf.
Fig. 8 (4)) which generically derives all defined tagged values from the loaded
profile‘s metamodel. The separate file resource which contains the profile appli-
cations is added to the EditingDomain of the modeling editor. Hence, as soon
as the model is saved, all profile applications are saved as well. Finally, pro-
file applications can be unloaded and reloaded at any time without loosing the
application information.

5 Related Work

One alternative to profiles as an annotation mechanism is to use weaving models
(e.g., by using Modelink6 or the Atlas Model Weaver7 [5]). Model weaving en-
ables to compose different separated models, and thus, could be used to compose
a core model with a concern-specific information model in a non-invasive man-
ner. However, although weaving models are a powerful mechanism, annotating
models with weaving models is counter-intuitive. Since this is not the intended
purpose of weaving models, users cannot annotate models using their familiar
environment such as a diagramming editor which graphically visualizes the core
model. Current approaches only allow to create weaving models with specific
tree-based editors in which there is no different visualization of the core model
and the annotated information. Not least because of this, weaving models may
quickly become very complex and challenging to manage.

Recently, Kolovos et al. presented an approach called Model Decorations [8]
tackling a very similar goal as EMF Profiles. Kolovos et al. proposed to attach
(or “decorate”) the additional information in terms of text fragments in GMF’s
diagram notes. To extract or inject the decorations from or into a model, hand-
crafted model transformations are employed which translate the text fragments
in the notes into a separate model and vice versa. Although their approach is
very related to ours, there also are major differences. First, for enabling the
decoration of a model, an extractor and injector transformation has to be man-
ually developed which is not necessary with EMF Profiles. Second, since Kolovos
et al. exploit GMF notes, only decorating GMF-based diagrams is possible. In
contrast to our approach, models for which no GMF editor is available cannot
be annotated. Third, the annotations are encoded in a textual format within

6 http://www.eclipse.org/gmt/epsilon/doc/modelink
7 http://www.eclipse.org/gmt/amw

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

the GMF notes. Consequently, typos or errors in these textual annotations can-
not be automatically identified and reported while they are created by the user.
Furthermore, users must be familiar with the textual syntax as well as the dec-
oration’s target metamodel (to which the extractor translates the decorations)
to correctly annotate a model. In EMF Profiles, stereotypes may only be applied
if they are actually applicable according to the profile definition and editing the
tagged values is guided by a form-based property sheet. Consequently, invalid
stereotype applications and tagged values can be largely avoided.

EMF Facet8, a spin-off of the MoDisco subproject [3] of Eclipse, is another
approach for non-intrusive extensions of Ecore-based metamodels. In particu-
lar, EMF Facet allows to define additional derived classes and features which
are computed from already existing model elements by model queries expressed,
e.g., in Java or OCL. Compared to EMF Profiles, EMF Facet targets on com-
plementary extension direction, namely the dynamic extension of models with
additional transient information derived from queries. In contrast, EMF Pro-
files allow to add new (not only derived) information and is able to persist this
additional information in separate files. Nevertheless, the combination of both
complementary approaches seems to be a subject for future work. For example,
this would allow to automatically extend or complete models based on EMF
Facet queries and persist this information with EMF Profiles.

6 Conclusions and Future Work

In this paper, we adapted the notion of UML Profiles to the realm of DSMLs
residing in the Eclipse Modeling Framework. Using our prototype EMF Profiles,
DSMLs may be easily extended in a non-invasive manner by defining profiles in
the same way as done in UML tools. Moreover, we introduced two novel mech-
anisms, namely Generic Profiles and Meta Profiles, for reusing defined profiles
with several DSMLs. Although, the presented approach has been presented based
on EMF, the general procedure is also applicable for other metamodeling frame-
works which comprise a similar metalevel architecture as EMF. Furthermore, the
presented metalevel lifting strategies may also be adopted for other scenarios in
which model elements on M1 need to be instantiated.

We successfully applied EMF Profiles for instance in the context of our model
versioning system AMOR9. In AMOR we created and applied a change pro-
file for annotating changes performed on models. Moreover, we also used EMF
Profiles for marking conflicts caused by concurrent changes of the same model ar-
tifact using a conflict profile. Both profiles have been defined as meta profiles to
build change detection and conflict detection components which are generically
applicable, i.e., independent of the used modeling languages.

In the future, we plan to elaborate on more sophisticated restriction mecha-
nisms to allow constraining the application of stereotypes (e.g. with OCL condi-
tions) and composing several independent profiles which are not mutually com-

8 http://www.eclipse.org/modeling/emft/facet
9 http://www.modelversioning.org

Draf
t

Acc
ep

ted
 at

 TOOLS
 20

11

plementary in one profile application as proposed by [11]. A consistent mix of
several profiles requires a mechanism to specify conditions constraining appli-
cability across more than one profile. For instance, one may need to specify
that a stereotype of profile A may only be applied after a stereotype of profile
B, holding a specific tagged value, has been applied. EMF‘s OCL plug-in and
EMF Query10 need to be extended to cope with this inter-profile scenarios. Next,
we plan to derive an easy-to-use API for programmatically creating, modifying,
and accessing profile applications. Finally, we aim at integrating EMF Profiles
into the EMF Facet project to combine their complementary features. By this,
a synergy of the extension mechanism of EMF Profiles for additional persisted
information and of EMF Facet‘s for derived information can be accomplished.

References

1. Atkinson, C., Kühne, T.: The Essence of Multilevel Metamodeling. In: UML 2001–
The Unified Modeling Language. pp. 19–33. Springer (2001)

2. Atkinson, C., Kühne, T.: A Tour of Language Customization Concepts. Advances
in Computers 70, 105–161 (2007)

3. Bruneliere, H., Cabot, J., Jouault, F., Madiot, F.: MoDisco: a generic and ex-
tensible framework for model driven reverse engineering. In: Proceedings of the
25th International Conference on Automated Software Engineering (ASE’10). pp.
173–174. ACM (2010)

4. Chen, P.P.S.: The Entity-Relationship Model—Toward a Unified View of Data.
ACM Transactions on Database Systems 1, 9–36 (1976)

5. Fabro, M.D.D., Bézivin, J., Jouault, F., Breton, E., Gueltas, G.: AMW: a generic
model weaver. In: Proceedings of the 1re Journe sur l’Ingnierie Dirige par les Modles
(IDM’05), France (2005)

6. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley-IEEE Computer Society Press (2008)

7. Kolovos, D., Rose, L., Drivalos Matragkas, N., Paige, R., Polack, F., Fernandes,
K.: Constructing and Navigating Non-invasive Model Decorations. In: Theory and
Practice of Model Transformations (ICMT’10). pp. 138–152. Springer (2010)

8. Kühne, T.: Matters of (meta-) modeling. Software and Systems Modeling 5, 369–
385 (2006)

9. Musser, D., Stepanov, A.: Generic Programming. In: Symbolic and Algebraic Com-
putation. LNCS, vol. 358, pp. 13–25. Springer (1989)

10. Noyrit, F., Gerard, S., Terrier, F., Selic, B.: Consistent Modeling Using Multi-
ple UML Profiles. In: Model Driven Engineering Languages and Systems (MoD-
ELS‘10). pp. 392–406. Springer (2010)

11. Object Management Group (OMG): Meta Object Facility, Version 2.0, http://
www.omg.org/spec/MOF/2.0/PDF/ (2006)

12. Object Management Group (OMG): Unified Modeling Language Infras-
tructure Specification, Version 2.1.2, http://www.omg.org/spec/UML/2.1.2/

Infrastructure/PDF (2007)
13. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML.

Object-Oriented Real-Time Distributed Computing, IEEE International Sympo-
sium on pp. 2–9 (2007)

10 http://www.eclipse.org/modeling/emf/?project=query

